MONTE CARLO METHODS AND APPLICATIONS

Carnegie Mellon University | 21-387 / 15-327 / 15-627 / 15-860 | Fall 2023

LECTURE 11 STOCHASTIC DIFFERENTIAL EQUATIONS

MONTE CARLO METHODS AND APPLICATIONS

Carnegie Mellon University | 21-387 | 15-327 | 15-627 | 15-860 | Fall 2023

DETERMINISTIC MOTION

depends on history

BROWNIAN MOTION

independent of history

Overview—SDEs & PDEs

- Ordinary & Stochastic Differential Equations (this lecture)
- how do we describe systems evolving *over time*? (**ODEs**)
- how do we incorporate randomness? (SDEs)
- how do we simulate motion numerically?
- Partial Differential Equations (next lecture)
- how do we describe systems evolving over *time & space?* (PDEs)
- how do we simulate these systems numerically?
- SDE \leftrightarrow PDE connection
 - Somewhat surprising perspective: can use **stochastic** ODEs to understand—*and simulate*—**deterministic** PDEs
 - ...and vice-versa!

analogy: *trajectory of rock* (+*wind*)

analogy: ripples on pond

Goal: Connect "microscopic" & "macroscopic"

Understand <u>statements</u> of two major **concepts** and see how they can be used for **computation**.

(Proofs that they're *true* will come later.)

History of Brownian Motion

- Brown's "life force"
 - "spontaneous" motion of organic particles
 - ...but also inorganic particles
- **Einstein's mystery:** how does random motion arise?
 - random "kicks" from water molecules are both too small, and too frequent
 - but occasionally random events "conspire" to give big kick in same direction
 - foundation of *statistical physics*
- Wiener process
 - formalize Brownian motion as a "non differentiable curve" (Wiener process)

Ordinary Differential Equations

Ordinary Differential Equations—Overview

- Differential equations *"lingua franca"* for phenomena appearing throughout nature, technology, & society
- Give an **implicit** description of quantities in terms of relative rates of change
 - "if I change quantity A by a little bit, how much does quantity B change?"
- Very different from an **explicit** description
 - *"what are the actual values of A or B?"*
- Basic task in mathematics & computation is therefore to solve for explicit values, given implicit description

You've probably already done this in your intro physics class! (Solve "F=ma")

Ordinary Differential Equation

An ordinary differential equation is any equation of the form

$$F\left(t, x, x', \dots, x^{(n)}\right) = 0$$

where F is any function of the (unknown) function x(t) and its first n derivatives in time.

We say this ODE is:

– *nth order in time* (or simply *nth order*)

– linear (or *nonlinear*) if F is a linear (or nonlinear) function of its inputs

some constant

Simple but important example:

$$\frac{d}{dt}x(t) = ax(t)$$

"the function is proportional to its derivative"

Q: Solution? initial $x(t) = ce^{value}e^{at}$

Check:

$$\frac{d}{dt}ce^{at} = ace^{at} = ax(t) \checkmark$$

1st-order Linear ODEs—General Solution

More generally, 1st-order linear ODE has the form

x(t)

t = ()

still dominated by exponential growth (for b > 1)

Solution:

$$se^{-bt/a} + \frac{ac-b(d+ct)}{b^2},$$

 $s \in \mathbb{R}$

Trivial Example—0th Order ODEs

Q: By the way, why didn't we start with 0th-order ODEs? :-)

Example.

$$x(t)^2 = bt + c \implies x(t) = \pm \sqrt{bt + t}$$

Example.

$$sin(x(t)) = at \implies x(t) = arcsin(at)$$

A: Because 0th-order "differential" equations are just *equations*! (No relationship between different moments in time...)

$\vdash C$

Example—Projectile Motion

Quite famous ODE: **Newton's 2nd law of motion** ("*F=ma*")

$$x''(t) = F/m_{assuming force, mass are constant}$$

2nd-order linear ODE

Systems of ODEs

One way to solve Newton's 2nd law: split into <u>system</u> of *1st-order* equations:

$$x''(t) = F/m$$

original ODE (2nd-order)

$$v(t) := x'(t)$$

think of velocity v as <i>independent quantity

$$\begin{cases} x'(t) = v(t) \\ v'(t) = F/m \end{cases}$$

"couple" position x and velocity v into a system of ODEs

Now solve each linear equation in sequence: $v(t) = \frac{F}{m}t + C$ determined by initial velocity: v(0) = c $x(t) = \frac{F}{2m}t^2 + tv_0 + d \stackrel{determined by}{\underset{x(0) = d}{\text{initial position:}}}$

ODEs—Vector Field Perspective

In general, ODE in several variables $x(t) = (x_1(t), ..., x_n(t))$ can be viewed as "flow" along a vector field $\vec{\omega}$.

vector field

$$x'(t) = \vec{\omega}(x(t))$$

change in velocity position vector fiel

Solution corresponds to streamline of vector field, starting from initial conditions.

> We'll use this visualization later to develop an understanding of SDEs...

Example—Projectile Motion

Consider the system of linear 1st-order ODEs

$$\begin{array}{l} x_1'(t) \ = \ ax_1(t) + bx_2(t) \\ x_2'(t) \ = \ cx_1(t) + dx_2(t) \end{array}$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{vmatrix} x_1(t) \\ x_2(t) \end{vmatrix}$

x(t)

stochastic process...

A

x'(t) = Ax(t)

Can write in matrix form as

x'(t)

Q: What do you think the solution should be?

For a single ODE we had $x'(t) = ax(t) \Longrightarrow x(t) = e^{at}x_0$

So, perhaps unsurprisingly,

$$x(t) = e$$

matrix exponential

Helpful for understanding
infinitesimal generator of
stochastic process...
$$e^A =$$

Numerical Integration of ODEs

Numerical Integration

- As usual, can't integrate most equations in closed form
- Instead, use numerical "time stepping" to approximate solution
- <u>General strategy:</u>
 - replace derivatives with differences
 - solve for the unknowns!
- (This will also be the basis of the finite difference method for PDEs...)

dx	
dt	

 $x_{t+\varepsilon} - x_t$ \mathcal{E}

Running Example—Frictionless Pendulum

$$\theta''(t) = -\sin(\theta(t))$$

Forward Euler

Consider any ODE of the form

$$\frac{d}{dt}x(t) = \vec{\omega}(x(t))$$

where x(t) is an \mathbb{R}^n -valued function of time *t*, and the velocity $\vec{\omega}$ is a vector field on \mathbb{R}^n .

We can approximate the time derivative dx/dt by a difference

Question: at which of the two points should we evaluate the velocity?

Forward Euler: assuming current point x(t) is <u>known</u>, and next point x(t) is <u>unknown</u>, probably easiest to evaluate $\vec{\omega}$ at the known point.

Forward Euler (continued)

 $\frac{d}{dt}x(t) = \vec{\omega}(x(t))$

 $\frac{x(t+\varepsilon) - x(t)}{\varepsilon} \approx \vec{\omega}(x(t))$

Forward Euler (continued)

$$\frac{d}{dt}x(t) = \vec{\omega}(x(t)) \qquad \qquad x(t+\varepsilon) \approx x(t) + \varepsilon$$

Suppose we have <u>initial conditions</u> $x(0) = x_0$. Then we can repeatedly apply this approximation to get a sequence

forward Euler $x_{k+1} = x_k + \varepsilon \vec{\omega}(x_k)$

Intuition: to get the next state, just step a little along the direction of velocity...

$-\varepsilon \, \vec{\omega}(x(t))$

Pendulum — Forward Euler

$$\theta_{k+1} = \theta_k - \varepsilon \sin(\theta_k)$$

Why does this happen?

Forward Euler-Stability Analysis

Consider a simpler (linear) problem:

exponential decay $\frac{d}{dt}x(t) = ax(t)$ $x(t) = ce^{at}$ initia value x(t)a < 0

t=0

forward Euler

 $\begin{aligned} x_{k+1} &= x_k + \varepsilon a x_k \\ &= (1 + \varepsilon a) x_k \\ &= (1 + \varepsilon a)^{k+1} x_0 \end{aligned}$

Q: will we always get <u>decay</u>?
A: No—must have |1+εa| < 1. Stay *monotonic*: ε < 1/|a|.

For general (nonlinear) ODE: bound ε in terms of eigenvalues of Jacobian at every point

Backward Euler

Consider again any ODE

$$\frac{d}{dt}x(t) = \vec{\omega}(x(t))$$

where x(t) is an \mathbb{R}^n -valued function of time *t*, and the velocity $\vec{\omega}$ is a vector field on \mathbb{R}^n .

Approximation of time derivative involves two points:

Question: what if we evaluate the velocity at $x(t + \varepsilon)$ instead of x(t)? **Backward Euler:** even though next point $x(t + \varepsilon)$ is not known, we can still evaluate velocity "implicitly," *i.e.*, solve for a point $x(t + \varepsilon)$ such that the finite difference in time equals the velocity at $x(t + \varepsilon)$.

Backward Euler (continued)

 $\frac{d}{dt}x(t) = \vec{\omega}(x(t))$

 $\frac{x(t+\varepsilon) - x(t)}{\varepsilon} \approx \vec{\omega}(x(t+\varepsilon))$

Backward Euler (continued)

$$\frac{d}{dt}x(t) = \vec{\omega}(x(t)) \qquad x(t+\varepsilon) - \varepsilon \,\vec{\omega}(x(t-\varepsilon)) = \vec{\omega}(x(t-\varepsilon)) - \varepsilon \,\vec{\omega}(x(t-\varepsilon)) = \varepsilon \,\vec{\omega}(x(t-\varepsilon)) \varepsilon \,\vec{\omega}(x(t-$$

Suppose we have <u>initial conditions</u> $x(0) = x_0$. Then we can repeatedly apply this approximation to get a sequence

backward Euler $x_{k+1} - \varepsilon \vec{\omega}(x_{k+1}) = x_k$

Summary: solve a (possibly nonlinear) equation for the next state.

$(+\varepsilon)) \approx x(t)$

Backward Euler

Why does this happen?

Symplectic Euler

For ODEs arising from <u>dynamical systems</u> (e.g., Newton's 2nd law), another option:

- first, update velocity from <u>old</u> position
- -then, update positions from <u>**new**</u> velocity
- For conservative systems (no friction, etc.) energy, momentum, etc., will not "drift" significantly up or down even over very long time scales

-exactly preserve *symplectic form* (sum of 2D phase-space areas in each dimension)

Symplectic Euler

This will (provably) continue <u>forever.</u>

ODE Integration—Beyond the Basics

- A <u>lot</u> to say about numerical integrators beyond forward/backward Euler
- E.g., can we get the "right" behavior for systems more complex than pendulum?
 - Yes! can use **geometric** integrators like *symplectic Euler* to get good long-term behavior for many systems (dissipative, non-conservative forces, ...)
- More generally, can improve integrator **accuracy**
 - Adams-Bashforth, Runge Kutta, ...
 - less error per step, but error can still *accumulate* over long times

scipy.integrate

Can often just invoke library functions (but please understand what they do!)

Numerical solution may not reflect reality!

Stochastic Differential Equations

Stochastic Differential Equations—Overview

- Now that we understand how to describe functions in terms of their derivatives, can add randomness to the picture
- <u>A few key pieces:</u>
 - **Brownian motion** basic notion of randomness for continuous functions
 - **Diffusion process** more general class of "random functions" that connect to broader applications & algorithms
 - Ito calculus
 - Ito's lemma basic notion of "stochastic differentiation"
 - ^o **Ito integral** basic notion of "stochastic integration"
 - Numerical integrators for SDEs

Stochastic Differential Equations—Motivation

- Consider particles jiggling in a water. What would it take to simulate this system using an ODE integrator?
- The issue is not merely that there are a lot of particles: to capture the "jiggling" motion, we'd also have to integrate ODEs for trajectories of a huge number of water molecules (~10²³).
- If mass of particles is large—or fluid is very cold motion due to thermal fluctuation is negligible, and we can just simulate projectile motion plus a linear drag force (linear ODE!)
- Otherwise, we have to actually model & simulate the forces that induce jiggling ("Langevin force")

Brownian motion — Motivation

- Processes found in nature, finance, etc., have <u>very</u> different physical/dynamical origins
- Each one "jiggles around" according to a very different distribution $P(x_{k+1} | x_k)$
- For fun, let's simulate random walks using a few distributions *p* (centered at 0):

Random Walks—A Few Steps

Suppose we take 10 steps. Can you tell which walk comes from which distribution?

Random Walks—A Few Steps

Suppose we take 10 steps. Can you tell which walk comes from which distribution?

Random Walks—Many Steps

Suppose we now take 10,000 steps. Can you still tell which walk is which?

Random Walks—Many Steps

Suppose we now take 10,000 steps. Can you still tell which walk is which?

Random Walks—Zooming Out

Let's watch what happens as we gradually zoom out:

Q: Why do these walks all look so similar "from a distance" even though they look very different "up close?"

Brownian motion — Big Picture

- A: Because of the central limit theorem!
- The distribution describing the location of the *n*th step is the sum of *n* copies of single-step distribution *p*
- Central limit theorem tells us that this distribution approaches a normal distribution as $n \rightarrow \infty$, no matter what p looks like
 - when we zoom out, can't see individual steps—only the effect of *n* steps, for fairly large *n*

Universality of Brownian Motion

Takeaway: Even though random processes found in nature, science, technology, etc., all have very different origins, their aggregate behavior is in many^{*} cases <u>extremely</u> well-predicted by one universal model.

*Though other stochastic processes *do* arise in nature!

Brownian Motion / Wiener Process

Brownian motion or *Wiener process* assigns random variable *W*^{*t*} to each time *t*:

$$W_{t_2} - W_{t_1} \sim \mathcal{N}(0, t_2 - t_1)$$

independent Gaussian increments

(W_t varies continuously with respect to t)

Wiener Process—Definition

More formally, a **Wiener process** is a time-parameterized family of random variables W_t (i.e., one random variable for each $t \in \mathbb{R}_{>0}$) such that:

Brownian motion exhibits <u>Markov</u> property!

(continuity) W_t is continuous in *t* almost surely *i.e.*, with probability 1 (independent increments) The "random increment" $W_{t_2} - W_{t_1}$ is independent of any past state W_{t_0} for all $0 \le t_0 < t_1 \le t_2$ (Gaussian increments) Each increment $W_{t_2} - W_{t_1}$ follows a normal distribution $\mathcal{N}(0, t_2 - t_1)$

Often, "Gaussian increments" condition given without any motivation

- e.g., why not consider other kinds of increments?
- hopefully you now understand why! ;-)

Donsker's Theorem

- Consider a sequence of i.i.d. random variables X_1, \ldots, X_n
- Can associate these discrete steps with a time-continuous function

$$\widehat{W}_n(t) := \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor tn \rfloor} X_i, \quad t \in [0, 1]$$

• **Donsker's theorem.** As $n \to \infty$, $\widehat{W}_n(t)$ converges^{*} to a standard Brownian motion W_t over $t \in [0,1]$

- *in an appropriate sense (Skorokhod topology)

Stopping Time

- Although many random processes could continue indefinitely, there is often a natural **stopping time**
 - For process $X_{t'}$ often denote stopping time by capital T
 - e.g., *stock options*: we purchase the option to purchase an asset at an alternative price <u>at a fixed</u> <u>time T</u>
 - e.g., *control theory*: need to "steer" noisy process toward a goal <u>over a fixed time T</u>
- Stopping time can itself be a random variable
 - *e.g.*, gamble until you run out of money!

video: Marc Miskin

Deterministic Process

CHANGE IN TIME

Note: if we "divide by dt'', get usual ODE $dx/dt = \omega(x(t))$

Brownian Process

equation (SDE)

Brownian Process with Drift

deterministic motion + "noise" -0r*random motion + "drift"*

Brownian Process with Variable Diffusion

 $dX_t = \alpha(X_t) dW_t$

RATE OF DIFFUSION

Brownian Process in Absorbing Medium

In general, may need to talk about random walk getting *"killed"* or *"absorbed"*—even though absorption does not appear in the SDE itself.

$dX_t = dW_t$

Roughly: integrating absorption over time determines (random) stopping time.

trajectory (X_t) absorption (σ)

Diffusion Process

"NOISE" **RATE OF** DIFFUSION

Anisotropic Diffusion

Q: Do you think our random walk will look the same (as $n \to \infty$) if we sample our step direction from these two distributions?

A: No! If our distribution is *anisotropic* (i.e., lacks rotational symmetry), our random walk will likewise be anisotropic.

Anisotropic Diffusion & Central Limit Theorem

- In multiple dimensions, the central limit theorem says that a sum of i.i.d. samples *X_i* from any distribution converges to a normal distribution with the same mean μ and covariance matrix Σ
 - in general, Σ can look very different from a constant multiple of the identity!

Function of a Stochastic Processes

- **Recall:** a function of a random variable is a random variable
- Likewise, a function of stochastic process is a stochastic process

K \uparrow \mathbb{R}^{n} f. $Y_t := f(X_t)$

 $dX_t = \vec{\omega}(X_t)dt + \sigma dW_t$

Itô's Formula

Itô's lemma provides "chain rule" for stochastic processes.

Rough intuition.

Deterministic derivatives ask: how much does output change if we vary the input along <u>a given direction</u>?

Stochastic derivatives ask: what <u>distribution</u> of change do we get by varying the input along <u>a distribution of directions?</u>

Kyoshi Itō

Itô's Formula—Ordinary Differential Equation

Itô's lemma provides "chain rule" for stochastic processes.

Example. For *deterministic* ODE, just the usual chain rule:

ordinary differential equation $dX_t = \vec{\omega}(X_t)dt$

time-varying function $f: \mathbb{R}^n \times \mathbb{R}_{>0} \to \mathbb{R}$

derived differential equation $Y_t := f(X_t)$

change in derived value over time

$$\Rightarrow dY_t =$$

temporal change in fitself

spatial change in f due to motion along trajectory $\left(\left.\frac{\partial f}{\partial t}\right|_{X_t} + \vec{\omega}|_{X_t} \cdot \nabla f|_{X_t}\right) dt$

Itô's Formula — Brownian Motion

Itô's lemma provides "chain rule" for stochastic processes.

Example. Most essential question: what about Brownian motion?

spatial change in f along random trajectory

Really strange: we only took <u>one</u> derivative (*d*). How did we end up with 2nd derivatives?

Itô's Lemma & Laplacian

Intuition.

- Over small time *t*, Brownian motion W_t explores a small neighborhood of X₀.
- At any point *x*, the Laplacian $\Delta f(x)$ gives difference between the value at x and value in small neighborhood.
- Hence, 1st-order change in observed value over time involves 2nd-order derivative in <u>space</u>.
- (Formal treatment: Øksendal §4.2)

$$\overline{f}_{h}(x) := \frac{1}{|B_{h}(x)|} \int_{B_{h}}$$

$$\overline{f}_{h}(x) = f(x)$$

f(y) dy $\Delta f(x) \propto \frac{f_h(x) - f(x)}{h^2} + O(h)^3$

Itô's Formula — Diffusion Process

Itô's lemma provides "chain rule" for stochastic processes.

Example. Overall we get a formula for general diffusion processes:

 $dX_t = \vec{\omega}dt + \alpha dW_t$ $f: \mathbb{R}^n \times \mathbb{R}_{>0} \to \mathbb{R}$ change in temporal spatial change in f spatial change in f derived value change in due to "exploration" due to motion along of local neighborhood over time fitself random path $dY_t = \left(\frac{\partial f}{\partial t} + \vec{\omega} \cdot \nabla f + \frac{1}{2}\alpha^2 \Delta f\right) dt + (\alpha \nabla f) \cdot dW_t$ Note: since all directions are spatial change in f due equally likely & f is locally linear, $\mathbb{E}[\nabla f \cdot dW_t] = 0$ to deterministic motion

time-varying function

Even more general form: Øksendal [2013, §4.2]

diffusion process

"derived" process $Y_t := f(X_t)$

Ito Integration

Deterministic Integral

Stochastic (Itô) Integral

"start at an initial point and add total change due to a stochastic function / random walk"

result is a random variable

Ito Integration (continued)

Perhaps easiest to understand in terms of numerical integration:

$$dX_t = \vec{\omega}(X_t)dt + \alpha(X_t)dW_t$$

Get better & better approximation of <u>one trajectory</u> by taking more steps *n*:

$$x_T^n := x_0 + \sum_{k=0}^{n-1} \varepsilon \vec{\omega}(x_k) + \varepsilon \alpha(x_k) W_k, \quad \varepsilon :=$$

As $n \to \infty$, the <u>distribution</u> of points x_T^n essentially describes result of Ito integral.

 $\frac{T}{n}$

More formal treatment: Øksendal [2013, Ch. 3]

Numerical Integration of SDEs

- Numerically integrating SDEs not much different from ODEs
 - roughly speaking: take a step and "add noise"
 - amount of noise should be proportional to time step ε

diffusion process $dX_t = \vec{\omega}(X_t)dt + \alpha(X_t)dW_t$

[Kloeden & Platen]

Pendulum in the Wind—Forward Euler-Maruyama

$$(d\theta_t, d\theta'_t) = (\theta'_t, -\sin(\theta_t))dt + \begin{bmatrix} 0 & 0 \\ 0 & \sigma_{\text{wind}} \end{bmatrix} dW_t \quad {}^{\sigma_{\text{wind}}} \sim$$

Pendulum in the Wind—Backward Euler-Maruyama

$$(d\theta_t, d\theta_t') = (\theta_t', -\sin(\theta_t))dt + \begin{bmatrix} 0 & 0 \\ 0 & \sigma_{\text{wind}} \end{bmatrix} dW_t \quad {}^{\sigma_{\text{wind}}} \sim$$

Pendulum in the Wind—Symplectic Euler-Maruyama

Pendulum as Random Variable

But wait a minute—didn't we say the result of Itô integration is a <u>random variable</u>? (Not just one "noisy" trajectory.)

Can think of our SDE integrator as a tool for approximating a *distribution,* rather than finding just <u>one</u> trajectory.

Application: Molecular Dynamics

- In fact, this is often the goal in **molecular dynamics**
 - use SDE integrator to simulate trajectory of molecules in "noisy" environment
 - perform many trials to understand <u>typical</u>/ <u>average</u> behavior of large *ensemble* of molecules
 - use information to predict behavior of diseases, response to drugs, build new materials, ...
 - alternative perspective: simulation is strategy for sampling states of system according to their probability
 - *–* **later:** *Langevin dynamics* ↔ *Langevin Monte Carlo*

video credits: Bohemian chemists, Max Planck society

COVID-19 spike protein

Beyond Brownian Motion—Martingales

- In general, **martingale** is stochastic process where:
 - average value doesn't change
 - average value is independent of history
- Discrete sequence of random variables X_1, \ldots, X_k is a martingale if $\mathbb{E}[X_{k+1} | X_1, ..., X_k] = X_k$

$$-(X_i \text{ need not be independent})$$

• Brownian motion is a model example in the continuous case

Basic **regularity** condition for stochastic processes

Makes it possible to generalize Brownian motion (and still say useful things...)

 X_t

nightingale

Overview—Stochastic Differential Equations

- **ODEs** implicitly describe systems evolving *over time*
- **SDEs** add *randomness* to this picture
- use numerical integration to recover explicit function from implicit description
- **forward Euler** simple/cheap but unstable
- **backward Euler** trickier/more expensive but stable
- **Euler-Maruyama** "just add noise" to simulate SDEs —
- Ito calculus lets us analyze SDEs
- **Ito's lemma** basic analogue of differentiation —
- Ito integration basic analogue of integration
- unlike ordinary calculus, get *distributions* (not definite values)

analogy: *trajectory of rock* (+*wind*)

MONTE CARLO METHODS AND APPLICATIONS

Carnegie Mellon University | 21-387 / 15-327 / 15-627 / 15-860 | Fall 2023

Thanks!