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DETERMINISTIC MOTION

depends on history

BROWNIAN MOTION

independent of history



Quverview —SDEs & PDEs

e Ordinary & Stochastic Differential Equations (this lecture) 2
— how do we describe systems evolving over time? (ODEs)

— how do we incorporate randomness? (SDEs)

— how do we simulate motion numerically?

 Partial Differential Equations (next lecture)

— how do we describe systems evolving over time & space? (PDEs)

— how do we simulate these systems numerically?
e SDE «— PDE connection

— Somewhat surprising perspective: can use stochastic ODEs to
understand—and simulate—deterministic PDEs

— ...and vice-versa! analogy: ripples on pond



Goal: Connect “microscopic” & “macroscopic”

Understand statements of two major concepts
and see how they can be used for computation.

Feynman-Kac formula

use random walks to solve PDEs

Fokker-Planck equation

ap _
o = aBp = V- (pw)

p(x)

X
solve PDEs to model random walks



History of Brownian Motion

e Brown’s “life force”

Robert Brown

— “spontaneous” motion of organic particles botanist

— ...but also inorganic particles
e Einstein’s mystery: how does random motion arise?

— random “kicks” from water molecules are both too
small, and too frequent

— but occasionally random events “conspire” to give
big kick in same direction

. o . Albert Einstein
— foundation of statistical physics physicist
* Wiener process /0
"1 Norbert Wiener

N
A

— formalize Brownian motion as a “non differentiable  SEs G | 110 0icion &
curve” (Wiener process) T

A
computer scientist




Ordinary Differential Equations



Ordinary Differential Equations — Quverview

e Differential equations “lingua franca” for phenomena appearing throughout
nature, technology, & society

e Give an implicit description of quantities in terms of relative rates of
change

* Very different from an explicit description

e Basic task in mathematics & computation is therefore to solve for explicit
values, given implicit description

You’ve probably already done this in
your intro physics class! (Solve “F=ma”)




Ordinary Differential Equation

An ordinary differential equation is any equation of the form

F (t, X, x’,...,x(”)) =

where F is any function of the (unknown) function x(t) and its first n
derivatives in time.

We say this ODE is:
— nth order in time (or simply nth order)

— linear (or nonlinear) if F is a linear (or nonlinear) function of its inputs



Example — 1st-order Linear ODEs

Simple but important example:

P

some constant

Gx(t) = ax(t)
7x(t) = ax(t
“the function is proportional to its derivative” "
Q: Solution? nitil
oailue at
x(t) = ce
Check:
d C

Lee™ = ace™ = ax(t) v

x(1)
c

=

a<0

0
exponential decay (e.g., caffeine in blood)

x(t)

a>0

t

0
exponential growth (e.g., bacteria on food)



1st-order Linear ODEs— General Solution

More generally, 1st-order linear ODE has the form

ax'(t)+ bx(t) +ct+d =0,
highest-order a,b,c,d € R, a # 0

derivative

x(1)

Solution:
still dominated by
exponential growth Sg_bt/a ac—b(d+tct)
(for b>1) b? ’
c
s € R

t=0



Trivial Example—O0th Order ODEs

Q: By the way, why didn’t we start with Oth-order ODEs? :-)

Example.

x(t)>=bt+c =  x(t)==EVbt+c

Example.

sin(x(t)) =at = x(t) = arcsin(at)

A: Because Oth-order “differential” equations are just equations!

(No relationship between different moments in time...)



Example— Projectile Motion

Quite famous ODE: Newton’s 2nd law of motion (“F=ma"

/]
X (t) :@ assuming force,
- mass are constant

2nd-order linear ODE

Q: Solution? o o
initial initial
position  velocity

x(t) = xg + tvg + ~- >

in reality: a lot more complicated
(aerodynamic drag, spin of ball, wind, ...)




Systems of ODEs

One way to solve Newton’s 2nd law: split into system of 1st-order equations:

/! /
x"'(t) =F/m v(t) := x'(t)
original ODE (2nd-order) think of velocity v as independent quantity
Now solve each linear equation in sequence:
Y(t) = () o linear e :
L determined by
U/(t) — F/m U(t) — %t —|— C mzt;a(l()z;e:logzty:
“couple” position x ang lz;c;{ocity F 2 determined by
nt t g nitial position:
v into a system of S x(t) — =+ tUO - d ini ;51(0;)90:51611011

2m



ODEs— Vector Field Perspective

In general, ODE in several variables x(¢) = (x(¢), ..., x,(¢)) can be
viewed as “flow” along a vector field @.

x'(t) = @ (x(t))

change in velocity
position vector field

Solution corresponds to streamline of
vector field, starting from initial conditions.

We'll use this visualization later to
develop an understanding of SDEs...




Example — Projectile Motion

-

—> X

—> X



Solving a System of Linear ODEs

Consider the system of linear 1st-order ODEs

1 (1)
x5 (1)

Can write in matrix form as

Q: What do you think the solution
should be?

axi(t) + bxo(t)
cx1(t) + dxo(t) For a single ODE we had
X' (t) = ax(t) = x(t) = e xg

le(t) _ _ | 4 b x1(t) _ So, perhaps unsurprisingly,
i XZ(t) ] - C d || XQ(t) ] x(t) _ (A,
) 4 x(t) matrix
exponential
Helpful for understanding A ®© 1 )
/ — nfinitesimal generator of et = —A
i (t) B AX(t) ln]sﬁtycl)lcflseigziac Ig)rocess... k;() k!




Numerical Integration of ODESs



Numerical Integration

e Asusual, can't integrate most equations in

closed form

* Instead, use numerical "time stepping" to

approximate solution

* General strategy:

ferences

— replace derivatives with di:

— solve for the unknowns!

e (This will also be the basis of the finite

difference method for PDEs.

..)




Running Example — Frictionless Pendulum

«— g AypojoA 1endue —

~—
-~ - A -

~—

©(0.0) = (0, —sin(d)) -1 <«—angled— +7

/

\\




Forward Euler

Consider any ODE of the form We can approximate the time
g . derivative dx/dt by a difference
arx(t) = @(x(t))

where x(t) is an R"-valued function
of time ¢, and the velocity wis a
vector field on IR”.

x(t+ )= x(t)

,e€>0

Question: at which of the two points should we evaluate the velocity?

Forward Euler: assuming current point x(f) is known, and next point
x(t) is unknown, probably easiest to evaluate @ at the known point.




Forward Euler (continued)

fx(t) = @(x(t) DX L (1)




Forward Euler (continued)

2 x(t) = @(x(t)) x(t+¢) ~ x(t) + e @(x(H))

Suppose we have initial conditions x(0) = xo.

Then we can repeatedly apply this approximation to get a sequence

forward Euler
X1 = X + €0 (xg)

Intuition: to get the next state, just step a little along the direction of velocity...




Or+1 = O — esin(6)

«— g A3d0o[PA 1eN3Ue —



Forward Euler — Stability Analysis

Consider a simpler (linear) problem:

forward Euler

exponential decay

X1 = Xp +
4 v(t) = ax(t) e ’(C’{ o
= (1 +ea)x;
X(t) — Ceat _ | k+1
ini;ial o (1 —I_ €ﬂ) X0
(0 e Q: will we always get decay?
A: No—must have |1+cal <1.

Stay monotonic: e <1/lal.

For general (nonlinear) ODE:
t bound ¢ in terms of eigenvalues of
Jacobian at every point

t=0




Backward Euler

Consider again any ODE Approximation of time
g derivative involves two points:

ai X (1) = @(x(t))

where x(t) is an R"-valued function
of time ¢, and the velocity wis a
vector field on IR”.

x(t+ )= x(t)

,e€>0

Question: what if we evaluate the velocity at x(t + ¢) instead of x(t)?

Backward Euler: even though next point x(t + ¢) is not known, we
can still evaluate velocity “implicitly,” i.e., solve for a point x(t + €)
such that the finite difference in time equals the velocity at x(t + €).



Backward Euler (continued)

4 x(t) = @(x(t)) T )




Backward Euler (continued)

%x(t) = w(x(t)) x(t+e) —ed(x(t+¢))~ x(t)

Suppose we have initial conditions x(0) = xo.

Then we can repeatedly apply this approximation to get a sequence

backward Euler
Xgy1 — €W(Xgq1) = Xk

Summary: solve a (possibly nonlinear) equation for the next state.




e — N

v .
O+1 — €sin(Og41

) = 0k |

1 solve via, e.q.,
Newton’s method

- x\ — 4//':.”—:__—:

«— g A3d0o[PA 1eN3Ue —



Backward Euler — Stability Analysis

Consider a simpler (linear) problem:

exponential decay
%x(t) = ax(t)

x(t) = ce™
initial
value

x(1)

t
t=0

backward Euler
Xk+1 — E0Xf41 = Xk
< (1 —ea)xp 1 = xy

1
— X1 = 1 Xk

; k+1

Q: will we always get decay?

A: Yes—since a <0, € >0, factor

always less than 1 (“unconditionally
stable”)

But may be “over-damped!”




Symplectic Euler

For ODEs arising from dynamical systems (e.g., Newton’s 2nd law), another option:

— first, update velocity from old position
—then, update positions from new velocity

e For conservative systems (no friction, etc.) energy, momentum, etc., will not “drift”
significantly up or down even over very long time scales

—exactly preserve symplectic form (sum of 2D phase-space areas in each dimension)

forward Euler backward Euler symplectic Euler

“Too

Hot



|
D
N~
|

e sin(6y)
<O’ use
k+1 o

new velocity to

ate old position

x‘ — ‘//:’_;_:__‘

This will (provably)

continue forever.

«— @ Ko7eA rem3ue —



ODE Integration — Beyond the Basics

* A lot to say about numerical integrators beyond ! st
forward /backward Euler I.
. . Solving Ordinar oy
e E.g., can we get the “right” behavior for systems more et
complex than pendulum? Equations |l Geometric
Stiff and Numerical
. . . ) Differential-Algebraic Integration
— Yes! can use geometric integrators like symplectic e TODIEMS S LY
Euler to get good long-term behavior for many i) for Oty Diferenti
systems (dissipative, non-conservative forces, ...) A0S
e More generally, can improve integrator accuracy §i
— Adams-Bashforth, Runge Kutta, ... & springer

— less error per step, but error can still accumulate over long times

Numericg] solution mgq
not reflect reality!

Can often just invoke library functions (but please understand what they do!)




Stochastic Differential Equations



Stochastic Differential Equations — Quverview

e Now that we understand how to describe functions in terms of their
derivatives, can add randomness to the picture

* A few key pieces:

— Brownian motion — basic notion of randomness for continuous functions

— Diffusion process — more general class of “random functions” that
connect to broader applications & algorithms

— Ito calculus

° Tto’s lemma — basic notion of “stochastic differentiation”
° Ito integral — basic notion of “stochastic integration”

— Numerical integrators for SDEs



Stochastic Differential Equations — Motivation

e Consider particles jiggling in a water. What would

>
it take to simulate this system using an ODE - 6
integrator? = O © 0
«C ' © ( ‘.
e The issue is not merely that there are a lot of pe ® © O ® @O Qo
particles: to capture the “jiggling” motion, we’d ¢ )) S N
. : : <@ 9, @€
also have to integrate ODEs for trajectories of a C ¢
~1023 e 16€° 9 °©
huge number of water molecules (~1023). - o o
20 ®) %
* If mass of particles is large—or fluid is very cold— 9.0 > - — © o
motion due to thermal fluctuation is negligible, and & (350 v 8 o Yo
we can just simulate projectile motion plus a linear | @o‘g -~ &
drag force (linear ODE!) e @ - ¢ UC? ©
. ©
e Otherwise, we have to actually model & simulate ® 00 ~
the forces that induce jiggling (“Langevin force”) © -



Brownian motion — Motivation

e Processes found in nature, finance, etc., have very different physical /dynamical origins
e Each one “jiggles around” according to a very different distribution P(x;_; | x;)

e For fun, let's simulate random walks using a few distributions p (centered at 0):

® ® ®

® ® ®

® ® ®
normal square circle points

ALGORITHM: X}, | < X, + &, & ~ p (iid.)



Random Walks — A Few Steps

Suppose we take 10 steps. Can you tell which walk comes from which distribution?

O
_ B




Random Walks — A Few Steps

Suppose we take 10 steps. Can you tell which walk comes from which distribution?

s = O




Random Walks — Many Steps

Suppose we now take 10,000 steps. Can you still tell which walk is which?

O
_ B




Random Walks — Many Steps

Suppose we now take 10,000 steps. Can you still tell which walk is which?




Random Walks — Zooming Out

Let’s watch what happens as we gradually zoom out:

() ™




Q: Why do these walks all look so similar “from a distance”—
even though they look very different “up close?”



Brownian motion — Big Picture

e A:Because of the central limit theorem!

e The distribution describing the location of
the nth step is the sum of n copies of single- n=1"
step distribution p "

e Central limit theorem tells us that this B |
distribution approaches a normal “«
distribution as n — o0, no matter what p
looks like n=>5

— when we zoom out, can’t see individual
steps—only the effect of n steps, for fairly .
n=

large n



Universality of Brownian Motion

Takeaway: Even though random processes found in nature, science,
technology, etc., all have very different origins, their aggregate behavior
is in many  cases extremely well-predicted by one universal model.

— . | " -

=




Brownian Motion | Wiener Process

Brownian motion or Wiener process assigns random variable W; to each time

Wtz — th ~ N(O, fy — tl)

independent Gaussian increments

t

0 £ %) (Wt varies continuously with respect to t)




Wiener Process — Definition

More formally, a Wiener process is a time-parameterized family of random
variables W, (i.e., one random variable for each t € R_) such that:

(continuity) W, is continuous in t@lmost surelj) " with
Brownian probability 1

motion | (independentincrements) The “random increment” Wt2 — th is

exhibits [independent of any past stateW, forall) <17, <7 <1,

Markov
property!| (Gaussian increments) Each increment W, — W, follows a normal

distribution A (O,tz — 1 1)

Often, “Gaussian increments” condition given without any motivation

— e.g., why not consider other kinds of increments?

— hopefully you now understand why! ;-)



Donsker’s Theorem

e Consider a sequence of i.i.d. random variables X;, ..., X,

e Can associate these discrete steps with a time-continuous function

AN

Wn — \/— Z X;, O 1]

e Donsker’s theorem. Asn — oo, W\n(t) converges to a standard
Brownian motion W, over € [0,1]



Stopping Time

Although many random processes could continue
indefinitely, there is often a natural stopping time

— For process X, often denote stopping time by
capital T

— e.g., stock options: we purchase the option to

purchase an asset at an alternative price at a fixed
time T

— e.g., control theory: need to “steer” noisy process
toward a goal over a fixed time T

e Stopping time can itself be a random variable

— .., gamble until you run out of money!

{ price T

S time

payoff date

video: Marc Miskin



Deterministic Process

ordinary differential equation (ODE)

AX; = @(Xy)dt

1\{) oted: if we “divide
Y dat”, get usual
ODE dx /jr — w(x(t))

® trajectory (Xj)

drift direction (@)




stochastic differential equation (SDE)

CHANGE IN
POSITION

® “NOISE”

® trajectory (Xj)




Brownian Process with Drift

deterministic motion + “noise”
random motion + “drift”

e dX; = CT](Xt)dt + dW;

® trajectory (Xj)

drift direction (@)




dX; = a(X;)dW;

RATE OF
DIFFUSION

® trajectory (Xj)

T |diffusivity (a)




Brownian Process in Absorbing Medium

In general, may need to talk about
random walk getting “killed” or
“absorbed”—even though absorption
does not appear in the SDE itself.

dX; = dW;

Roughly: integrating absorption
over time determines (random)
stopping time.

® trajectory (Xj)

W absorption (0)




CHANGE IN CHANGE IN

POSITION TIME “NOISE”
dX; = C?(Xt)dt -+ Dé(Xt)th
VELOCITY RATE OF
DIFFUSION

® trajectory (X;)
=== drift direction (&)
7 absorption (0)
T |diffusivity (a)




Anisotropic Diffusion

Q: Do you think our random walk will look the same (asn — o)

if we sample our step direction from these two distributions?

A: Nol! If our distribution is anisotropic (i.e., lacks rotational
symmetry), our random walk will likewise be anisotropic.



Anisotropic Diffusion & Central Limit Theorem

e In multiple dimensions, the central
limit theorem says that a sum of i.i.d.
samples X, from any distribution
converges to a normal distribution
with the same mean y and covariance
matrix 2.

— in general, 2 can look very different

from a constant multiple of the
identity!

Zi,j —

O =

covariance matrix

_ O

B [(Xi — i) (X5 — )]

1 1/2°
1/2 1




Function of a Stochastic Processes

® Recall: a function of a random variable is a random variable
e Likewise, a function of stochastic process is a stochastic process

Natura] question:

What 1S the SDE
gO0Verning y,?

-

f:R" =R

dX

= CU Xt dt + ocdW; Y: = f(Xt)



[t6’s Formula

[t6’s lemma provides “chain rule” for stochastic processes.

Rough intuition.

Deterministic derivatives ask: how much
does output change if we vary the input
along a given direction?

Stochastic derivatives ask: what
distribution of change do we get by
varying the input along a distribution of
directions?

Kyoshi Ito




I[to’s Formula— Ordinary Differential Equation

[t6’s lemma provides “chain rule” for stochastic processes.

Example. For deterministic ODE, just the usual chain rule:

ordinary differential equation

temporal

dX — (TJ X dt change in change in spatial change in
; ( t) derived value f itégelf f due to motion
over Hme along trajectory
time-varying function Bf -
f:R"xRsg— R t (atx+ x - Vflx,
— t

derived differential equation

Yi = f(X¢)

dt



It6’s Formula — Brownian Motion

[t6’s lemma provides “chain rule” for stochastic processes.

Example. Most essential question: what about Brownian motion?

pure Brownian motion

dXt — th change in
derived value Laplacian of spatial change in f
over time function f along random trajectory
time-independent function 1
f:Rn S R — dYt — 2Af|Xt dt"‘ Vf|Xt th
derived stochastic process n 8'2 f Really strange: we only took
Yt — f (Xt) Af — Z e one derivative (d). How dld we
r—1 0 xiz end up with 2nd derivatives?




Ito’s Lemma & Laplacian

Intuition. | -
Wt - f
— Over small time t, Brownian i ;
motion W; explores a small .
neighborhood of Xo. . ,: : : 3
— Atany point x, the Laplacian Af (x)

~ L 4
......

gives difference between the value
at x and value in small
neighborhood.

_ o .
— Hence, 1st-order change in fh (X) " By (x)] B f(y) d]/
observed value over time involves n (%)
2nd-order derivative in space.




Ito’s Formula — Diffusion Process

[t6’s lemma provides “chain rule” for stochastic processes.

Example. Overall we get a formula for general diffusion processes:

diffusion process time-varying function “derived” process
dX; = cwdt + adWy f:R"xRsy — R Y; = f(Xy)
changein  temporal spatial change in f spatial change in f
derived value change in due to “exploration” due to motion along
over time fitself of local neighborhood random path

dYy = (aa{ | c?)-Ver%zszf) dt + (aVf) - dW;

spatial change in f due o 11 directions are
to deterministic motion i%ﬁéﬁ?ﬁigly & fis locally

linear, E[ V/ dw,) =0

Even more general form: Uksendal [2013, §4.2]




Ito Integration

Deterministic Integral Stochastic (It0) Integral
“start at an initial point and add “start at an initial point and add
total change due to a deterministic total change due to a stochastic
function [ vector field” function [ random walk”
T T
Y= [ @at Y= [ aw
0 0
Y7
Yo
Yo

result is a point in space result is a random variable




Ito Integration (continued)

Perhaps easiest to understand in terms of numerical integration:

dX; = @(Xt)dt -+ OC(Xt)th

velocity at
Elller-MaI'uyama l&lSt StZte dlﬂ"l/lSlUlty TZOiSe

X1 = Xp + € (@ (xx) + () W)

next last
state state ~ Step Wk ~ N(O, 1)

Get better & better approximation of one trajectory by taking more steps n:

n—1
X=X+ ) e (xy) +ea(x)Wi, e:=T
k=0
As n — oo, the distribution of points x7 essentially describes result of Ito integral.

More formal treatment: Qksendal [2013, Ch. 3]



Numerical Integration of SDES

e Numerically integrating SDEs not much different from ODEs

— roughly speaking: take a step and “add noise”

— amount of noise should be proportional to time step ¢

diffusion process

dX; = C?J(Xt)dt -+ DC(Xt)th

Euler-Maruyama (forward)

Xk+1 — Xk

&(w(xx)

explicit

o (g ) Wi )

W, ~ N(0,1)

[Kloeden & Platen]

Euler-Maruvama (backward)

X1 — 80 (Xg1 ) = xx + ey ) Wi

(i.d.d.)

implicit



Pendulum in the Wind — Forward Euler-Maruyama

0 0 Owind ~ N (3, 5
dW;
0 Uwind J

do;, d@; 92, —sin(6;))dt +

= Ene - T e P e — S —ing wind velocity p=3/5

> >— = B s T g E 2 - B : I

— g A3do[PA 1en3ue —

+
=

“drift @6,0) M <— angle —



Pendulum in the Wind — Backward Euler-Maruyama

(d6;,d6)) = (6], — sin(6;))dt +

0 0
0 Owind

dW;

— e e A\\ —
— o — —
>~ //////Vfr “\\\\ T \w
- — - - \\ —
- '/" = > /"/'.—-» AT \\\ -
v > > Y gk ~ e —
— _y r i e - A S
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TTT

Owind ~ N (2, 5)
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wind velocity

/



Pendulum in the Wind — Symplectic Euler-Maruyama

o1 = O —e(sin(6)) — Orying) Twind ~ N (5, 5)
Qk——l — 9k+89;(_|_1 J

XA
i
|

/1:3/5

—— — — e —— — wind velocity
e - B —— iy ~ T
Risix ,/r/'/ T — A e D
/V —
il = /'/V—" i i S —

—_P”/ e /// - /V'V—’.\\ N e A A T™
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Pendulum as Random Variable

But wait a minute—didn’t we say the result of It6 integration is a random variable?
(Not just one “noisy” trajectory.)

T

Can think of our SDE integrator as a tool for approximating a
distribution, rather than finding just one trajectory.



Application: Molecular Dynamics

Freezing of water: Molecular view

e In fact, this is often the goal in molecular dynamics

— use SDE integrator to simulate trajectory of
molecules in “noisy” environment

— perform many trials to understand typical/
average behavior of large ensemble of molecules

— use information to predict behavior of diseases,
response to drugs, build new materials, ...

— alternative perspective: simulation is strategy for
sampling states of system according to their

probability

— later: Langevin dynamics <> Langevin Monte Carlo




Beyond Brownian Motion —Martingales

e In general, martingale is stochastic process where:

— average value doesn’t change

— average value is independent of history

e Discrete sequence of random variables X, ..
martingale if E[ X, | X, ..

— (X; need not be independent)

e Brownian motion is a model example in the

continuous case

Basic regularl

for stochastic processes ﬂi

ty condition 4

L, Xp1sa

Makes it possib]e to
generalize Brownijan
motion (and sti]] say

useful things. . )

martingale






Overview — Stochastic Differential Equations

e ODEs implicitly describe systems evolving over time
e SDEs add randomness to this picture

e use numerical integration to recover explicit function from
implicit description

— forward Euler — simple/cheap but unstable

— backward Fuler — trickier / more expensive but stable analogy: trajectory of rock (+wind)

— EBuler-Maruyama — “just add noise” to simulate SDEs

e [to calculus lets us analyze SDEs
— Ito’s lemma — basic analogue of differentiation @
— Ito integration — basic analogue of integration

— unlike ordinary calculus, get distributions (not definite values)
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