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MONTE CARLO METHODS
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LECTURE 11 
STOCHASTIC DIFFERENTIAL EQUATIONS



DETERMINISTIC MOTION BROWNIAN MOTION

depends on history independent of history



Overview—SDEs & PDEs
• Ordinary & Stochastic Differential Equations (this lecture)

– how do we describe systems evolving over time? (ODEs)

– how do we incorporate randomness? (SDEs)

– how do we simulate motion numerically?

• Partial Differential Equations (next lecture)

– how do we describe systems evolving over time & space? (PDEs)

– how do we simulate these systems numerically?

• SDE  PDE connection

– Somewhat surprising perspective: can use stochastic ODEs to 
understand—and simulate—deterministic PDEs

– …and vice-versa!

⟷

analogy: trajectory of rock (+wind)

analogy: ripples on pond



Fokker-Planck equationFeynman-Kac formula

Goal: Connect “microscopic” & “macroscopic”
Understand statements of two major concepts

(Proofs that they’re true will come later.)

solve PDEs to model random walksuse random walks to solve PDEs

and see how they can be used for computation.



History of Brownian Motion
• Brown’s “life force”

– “spontaneous” motion of organic particles

– …but also inorganic particles 

• Einstein’s mystery: how does random motion arise?

– random “kicks” from water molecules are both too 
small, and too frequent

– but occasionally random events “conspire” to give 
big kick in same direction

– foundation of statistical physics

• Wiener process

– formalize Brownian motion as a “non differentiable 
curve” (Wiener process)

 Robert Brown 
botanist

 Norbert Wiener
mathematician &
computer scientist

Albert Einstein
physicist



Ordinary Differential Equations



Ordinary Differential Equations—Overview
• Differential equations “lingua franca” for phenomena appearing throughout 

nature, technology, & society
• Give an implicit description of quantities in terms of relative rates of 

change
– “if I change quantity A by a little bit, how much does quantity B change?"

• Very different from an explicit description
– “what are the actual values of A or B?”

• Basic task in mathematics & computation is therefore to solve for explicit 
values, given implicit description

You’ve probably already done this in 
your intro physics class! (Solve “F=ma”)



Ordinary Differential Equation
An ordinary differential equation is any equation of the form

We say this ODE is:

– nth order in time (or simply nth order)

– linear (or nonlinear) if F is a linear (or nonlinear) function of its inputs

where F is any function of the (unknown) function x(t) and its first n 
derivatives in time.



Example — 1st-order Linear ODEs
Simple but important example:

“the function is proportional to its derivative”

Q: Solution?

Check:

initial 
value

some constant

t=0 t

c
x(t)

exponential decay (e.g., caffeine in blood)

a < 0

t=0 tc

x(t)

exponential growth (e.g., bacteria on food)

a > 0



1st-order Linear ODEs—General Solution
More generally, 1st-order linear ODE has the form

Solution:

highest-order
derivative

t=0 t

c

x(t)

still dominated by 
exponential growth 

(for b > 1)



Trivial Example—0th Order ODEs
Q: By the way, why didn’t we start with 0th-order ODEs? :-)

Example.

Example.

A: Because 0th-order “differential” equations are just equations!
(No relationship between different moments in time…)



Example—Projectile Motion
Quite famous ODE: Newton’s 2nd law of motion (“F=ma”)

assuming force, 
mass are constant

2nd-order linear ODE

Q: Solution? initial 
position

initial 
velocity

in reality: a lot more complicated
(aerodynamic drag, spin of ball, wind, …)



Systems of ODEs
One way to solve Newton’s 2nd law: split into system of 1st-order equations:

original ODE (2nd-order) think of velocity v as independent quantity

“couple” position x and velocity 
v into a system of ODEs

Now solve each linear equation in sequence:
determined by 
initial velocity: 

v(0) = c

determined by 
initial position: 

x(0) = d



ODEs—Vector Field Perspective

change in 
position

velocity 
vector field

In general, ODE in several variables  can be 
viewed as “flow” along a vector field .

x(t) = (x1(t), …, xn(t))⃗ω

x1

x2

→

→

Solution corresponds to streamline of 
vector field, starting from initial conditions.

We’ll use this visualization later to 
develop an understanding of SDEs…



Example—Projectile Motion

x

v

→

→

0

x

v

→
→

0



Solving a System of Linear ODEs
Consider the system of linear 1st-order ODEs

Can write in matrix form as

Q: What do you think the solution 
should be?

For a single ODE we had

So, perhaps unsurprisingly,

matrix
exponential

Helpful for understanding 
infinitesimal generator of 

stochastic process…



Numerical Integration of ODEs



Numerical Integration
• As usual, can't integrate most equations in 

closed form

• Instead, use numerical "time stepping" to 
approximate solution

• General strategy:

– replace derivatives with differences

– solve for the unknowns!

• (This will also be the basis of the finite 
difference method for PDEs…)



Running Example—Frictionless Pendulum

 angle  ⟵ θ ⟶ +π-π

 angular velocity 
  

←
θ′

￼→

⃗ω (θ, θ′￼) = (θ′￼, −sin(θ))



Forward Euler
Consider any ODE of the form

where x(t) is an -valued function 
of time t, and the velocity  is a 
vector field on .

We can approximate the time 
derivative dx/dt by a difference

Question: at which of the two points should we evaluate the velocity?

Forward Euler: assuming current point x(t) is known, and next point 
x(t) is unknown, probably easiest to evaluate  at the known point.



Forward Euler (continued)



Forward Euler (continued)

Suppose we have initial conditions x(0) = x0.
Then we can repeatedly apply this approximation to get a sequence

forward Euler

Intuition: to get the next state, just step a little along the direction of velocity…



Pendulum — Forward Euler
Why does this 

happen?

 angle  ⟵ θ ⟶ +π-π

 angular velocity 
  

←
θ′

￼→

velocity ⃗ω



Forward Euler—Stability Analysis
Consider a simpler (linear) problem:

initial 
value

t=0 t

c
x(t)

a < 0

exponential decay forward Euler

Q: will we always get decay?
A:  No—must have |1+εa| < 1.

For general (nonlinear) ODE:
bound ε in terms of eigenvalues of 

Jacobian at every point

Stay monotonic: ε < 1/|a|.

5 10 k

c
xk

ε = 0.5

5 10 k

c

0

xk
ε = 1.75

5 10 k

c

xk
ε = 2.25

a = -1



Backward Euler
Consider again any ODE

where x(t) is an -valued function 
of time t, and the velocity  is a 
vector field on .

Approximation of time 
derivative involves two points:

Question: what if we evaluate the velocity at x(t + ε) instead of x(t)?

Backward Euler: even though next point x(t + ε) is not known, we 
can still evaluate velocity “implicitly,” i.e., solve for a point x(t + ε) 
such that the finite difference in time equals the velocity at x(t + ε).



Backward Euler (continued)



backward Euler

Backward Euler (continued)

Suppose we have initial conditions x(0) = x0.
Then we can repeatedly apply this approximation to get a sequence

Summary: solve a (possibly nonlinear) equation for the next state.



Backward Euler

solve via, e.g., 
Newton’s method

Why does this 
happen?

 angle  ⟵ θ ⟶ +π-π

 angular velocity 
  

←
θ′

￼→

velocity ⃗ω



Backward Euler—Stability Analysis
Consider a simpler (linear) problem:

initial 
value

t=0 t

c
x(t)

a < 0

exponential decay backward Euler

Q: will we always get decay?
A:  Yes—since a < 0, ε > 0, factor 
always less than 1 (“unconditionally 
stable”)

5 10 k

c
xk

ε = 0.5

5 10 k

c
xk

ε = 1.75

5 10 k

c
xk

ε = 2.25

a = -1

But may be “over-damped!”



Symplectic Euler
For ODEs arising from dynamical systems (e.g., Newton’s 2nd law), another option:

– first, update velocity from old position
–then, update positions from new velocity

• For conservative systems (no friction, etc.) energy, momentum, etc., will not “drift” 
significantly up or down even over very long time scales
–exactly preserve symplectic form (sum of 2D phase-space areas in each dimension)

forward Euler backward Euler symplectic Euler



Symplectic Euler

use new velocity to 
update old position

 angle  ⟵ θ ⟶ +π-π

 angular velocity 
  

←
θ′

￼→

velocity ⃗ω

This will (provably) 
continue forever.



ODE Integration—Beyond the Basics

Can often just invoke library functions (but please understand what they do!)

Numerical solution may not reflect reality!
scipy.integrate

• More generally, can improve integrator accuracy

– Adams-Bashforth, Runge Kutta, …

– less error per step, but error can still accumulate over long times

• A lot to say about numerical integrators beyond 
forward/backward Euler

• E.g., can we get the “right” behavior for systems more 
complex than pendulum?

– Yes!  can use geometric integrators like symplectic 
Euler to get good long-term behavior for many 
systems (dissipative, non-conservative forces, …)



Stochastic Differential Equations



Stochastic Differential Equations—Overview
• Now that we understand how to describe functions in terms of their 

derivatives, can add randomness to the picture
• A few key pieces:

– Brownian motion — basic notion of randomness for continuous functions
– Diffusion process — more general class of “random functions” that 

connect to broader applications & algorithms
– Ito calculus

° Ito’s lemma — basic notion of “stochastic differentiation”
° Ito integral — basic notion of “stochastic integration”

– Numerical integrators for SDEs



Stochastic Differential Equations—Motivation
• Consider particles jiggling in a water.  What would 

it take to simulate this system using an ODE 
integrator?

• The issue is not merely that there are a lot of 
particles: to capture the “jiggling” motion, we’d 
also have to integrate ODEs for trajectories of a 
huge number of water molecules (~1023).

• If mass of particles is large—or fluid is very cold—
motion due to thermal fluctuation is negligible, and 
we can just simulate projectile motion plus a linear 
drag force (linear ODE!)

• Otherwise, we have to actually model & simulate 
the forces that induce jiggling (“Langevin force”)



Brownian motion — Motivation
• Processes found in nature, finance, etc., have very different physical/dynamical origins

• Each one “jiggles around” according to a very different distribution 

• For fun, let's simulate random walks using a few distributions  (centered at 0):

P(xk+1 |xk)

p

ALGORITHM:   (i.i.d.)xk+1 ← xk + ξk, ξk ∼ p

normal square circle points



Random Walks—A Few Steps
Suppose we take 10 steps.  Can you tell which walk comes from which distribution?



Random Walks—A Few Steps
Suppose we take 10 steps.  Can you tell which walk comes from which distribution?



Random Walks—Many Steps
Suppose we now take 10,000 steps.  Can you still tell which walk is which?



Random Walks—Many Steps
Suppose we now take 10,000 steps.  Can you still tell which walk is which?



Random Walks—Zooming Out
Let’s watch what happens as we gradually zoom out:



Q: Why do these walks all look so similar “from a distance”—
even though they look very different “up close?” 



Brownian motion — Big Picture
• A: Because of the central limit theorem!

• The distribution describing the location of 
the  step is the sum of  copies of single-
step distribution 

• Central limit theorem tells us that this 
distribution approaches a normal 
distribution as , no matter what  
looks like

– when we zoom out, can’t see individual 
steps—only the effect of  steps, for fairly 
large 

nth n
p

n → ∞ p

n
n

ξ1 + ⋯ + ξn

n=1

n=2

n=5

n=1k



Universality of Brownian Motion

Takeaway: Even though random processes found in nature, science, 
technology, etc., all have very different origins, their aggregate behavior 
is in many* cases extremely well-predicted by one universal model.

*Though other stochastic processes do arise in nature!



Brownian Motion / Wiener Process

t

Brownian motion or Wiener process assigns random variable Wt to each time t:

independent Gaussian increments

(Wt varies continuously with respect to t)



Wiener Process—Definition
More formally, a Wiener process is a time-parameterized family of random 
variables  (i.e., one random variable for each ) such that:Wt t ∈ ℝ>0

(continuity)  is continuous in t almost surely

(independent increments) The “random increment”  is 
independent of any past state  for all 

(Gaussian increments) Each increment  follows a normal 
distribution 

Wt

Wt2 − Wt1
Wt0 0 ≤ t0 < t1 ≤ t2

Wt2 − Wt1𝒩(0,t2 − t1)

Often, “Gaussian increments” condition given without any motivation

– e.g., why not consider other kinds of increments?

– hopefully you now understand why! ;-)

i.e., with 
probability 1Brownian 

motion 
exhibits 
Markov 

property!



Donsker’s Theorem
• Consider a sequence of i.i.d. random variables 

• Can associate these discrete steps with a time-continuous function

X1, …, Xn

• Donsker’s theorem.  As ,  converges* to a standard 
Brownian motion  over 

– *in an appropriate sense (Skorokhod topology)

n → ∞ ̂W n(t)
Wt t ∈ [0,1]



Stopping Time
• Although many random processes could continue 

indefinitely, there is often a natural stopping time

– For process , often denote stopping time by 
capital T

– e.g., stock options: we purchase the option to 
purchase an asset at an alternative price at a fixed 
time T

– e.g., control theory: need to “steer” noisy process 
toward a goal over a fixed time T

• Stopping time can itself be a random variable

– e.g., gamble until you run out of money!

Xt

price

time

payoff date

T

video: Marc Miskin



Deterministic Process

drift direction
trajectory

CHANGE IN
POSITION

VELOCITY

CHANGE IN
TIME

ordinary differential equation (ODE)

Note: if we “divide by dt”, get usual ODE dx/dt = ω(x(t))



Brownian Process
stochastic differential equation (SDE)

CHANGE IN
POSITION

“NOISE”

trajectory



Brownian Process with Drift

drift direction
trajectory

deterministic motion + “noise”
–or–

random motion + “drift”

CHANGE IN
POSITION

BROWNIAN
MOTION

VELOCITY

CHANGE IN
TIME



Brownian Process with Variable Diffusion

trajectory
diffusivity

RATE OF
DIFFUSION



Brownian Process in Absorbing Medium

trajectory
absorption

In general, may need to talk about 
random walk getting “killed” or 

“absorbed”—even though absorption 
does not appear in the SDE itself.

Roughly: integrating absorption 
over time determines (random) 

stopping time.



Diffusion Process

drift direction
trajectory

absorption
diffusivity

RATE OF
DIFFUSION

CHANGE IN
POSITION

VELOCITY

CHANGE IN
TIME “NOISE”



Anisotropic Diffusion
Q: Do you think our random walk will look the same (as ) 
if we sample our step direction from these two distributions?

n → ∞

A: No!  If our distribution is anisotropic (i.e., lacks rotational 
symmetry), our random walk will likewise be anisotropic.



Anisotropic Diffusion & Central Limit Theorem
• In multiple dimensions, the central 

limit theorem says that a sum of i.i.d. 
samples  from any distribution 
converges to a normal distribution 
with the same mean  and covariance 
matrix 

– in general,  can look very different 
from a constant multiple of the 
identity!

Xi

μ
Σ

Σ

covariance matrix



Function of a Stochastic Processes
• Recall: a function of a random variable is a random variable
• Likewise, a function of stochastic process is a stochastic process

Natural question:what is the SDE governing Yt?



Itô’s Formula
Itô’s lemma provides “chain rule” for stochastic processes.

Kyoshi Itō

Rough intuition.

Deterministic derivatives ask: how much 
does output change if we vary the input 
along a given direction?

Stochastic derivatives ask: what 
distribution of change do we get by 
varying the input along a distribution of 
directions?



Itô’s Formula—Ordinary Differential Equation
Itô’s lemma provides “chain rule” for stochastic processes.

Example. For deterministic ODE, just the usual chain rule:

time-varying function

ordinary differential equation

derived differential equation

change in 
derived value 

over time

temporal 
change in 

f itself
spatial change in 
f due to motion 
along trajectory 



Itô’s Formula — Brownian Motion
Itô’s lemma provides “chain rule” for stochastic processes.

Example. Most essential question: what about Brownian motion?

time-independent function

pure Brownian motion

derived stochastic process

change in 
derived value 

over time
Laplacian of 
function f

spatial change in f 
along random trajectory

Really strange: we only took 
one derivative (d).  How did we 

end up with 2nd derivatives?



Itô’s Lemma & Laplacian
Intuition.

– Over small time t, Brownian 
motion Wt explores a small 
neighborhood of X0.

– At any point x, the Laplacian ∆f (x) 
gives difference between the value 
at x and value in small 
neighborhood.

– Hence, 1st-order change in 
observed value over time involves 
2nd-order derivative in space.

– (Formal treatment: Øksendal §4.2)

h

fWt



Itô’s Formula — Diffusion Process
Itô’s lemma provides “chain rule” for stochastic processes.

Even more general form: Øksendal [2013, §4.2]

Example. Overall we get a formula for general diffusion processes:

time-varying functiondiffusion process “derived” process

change in 
derived value 

over time

temporal 
change in 

f itself

spatial change in f due 
to deterministic motion

spatial change in f 
due to motion along 

random path

spatial change in f 
due to “exploration” 
of local neighborhood

Note: since all directions are 

equally likely & f is locally 

linear, 𝔼[∇f ⋅ dWt] = 0



Ito Integration
Deterministic Integral

result is a point in space

“start at an initial point and add 
total change due to a deterministic 

function / vector field”

Stochastic (Itô) Integral

result is a random variable

“start at an initial point and add 
total change due to a stochastic 

function / random walk”



Ito Integration (continued)
Perhaps easiest to understand in terms of numerical integration:

Euler-Maruyama

next 
state

last 
state

time 
step

velocity at 
last state diffusivity noise

Get better & better approximation of one trajectory by taking more steps n:

As , the distribution of points  essentially describes result of Ito integral.n → ∞
More formal treatment: Øksendal [2013, Ch. 3]



Numerical Integration of SDEs
• Numerically integrating SDEs not much different from ODEs

– roughly speaking: take a step and “add noise”

– amount of noise should be proportional to time step ε

Euler-Maruyama (forward) Euler-Maruyama (backward)

explicit implicit

[Kloeden & Platen]

diffusion process



Pendulum in the Wind—Forward Euler-Maruyama

 angle  ⟵ θ ⟶ +π-π

 angular velocity 
  

←
θ′

￼→

drift ⃗ω (θ, θ′￼)

μ=3/5



Pendulum in the Wind—Backward Euler-Maruyama

 angle  ⟵ θ ⟶ +π-π

 angular velocity 
  

←
θ′

￼→

drift ⃗ω (θ, θ′￼)

μ=3/5



Pendulum in the Wind—Symplectic Euler-Maruyama

 angle  ⟵ θ ⟶ +π-π

 angular velocity 
  

←
θ′

￼→

drift ⃗ω (θ, θ′￼)

μ=3/5



Pendulum as Random Variable
But wait a minute—didn’t we say the result of Itô integration is a random variable?  

(Not just one “noisy” trajectory.)

Can think of our SDE integrator as a tool for approximating a 
distribution, rather than finding just one trajectory.



Application: Molecular Dynamics
• In fact, this is often the goal in molecular dynamics

– use SDE integrator to simulate trajectory of 
molecules in “noisy” environment

– perform many trials to understand typical/
average behavior of large ensemble of molecules

– use information to predict behavior of diseases, 
response to drugs, build new materials, …

– alternative perspective: simulation is strategy for 
sampling states of system according to their 
probability

– later: Langevin dynamics  Langevin Monte Carlo↔
video credits: Bohemian chemists, Max Planck society

COVID-19 spike protein



Beyond Brownian Motion—Martingales
• In general, martingale is stochastic process where:

– average value doesn’t change

– average value is independent of history

• Discrete sequence of random variables  is a 
martingale if 

– (  need not be independent)

• Brownian motion is a model example in the 
continuous case

X1, …, Xk
𝔼[Xk+1 |X1, …, Xk] = Xk

Xi

t

Xt

nightingale

martingale

Basic regularity condition 
for stochastic processes

Makes it possible to generalize Brownian motion (and still say useful things…)



Summary



Overview—Stochastic Differential Equations
• ODEs implicitly describe systems evolving over time

• SDEs add randomness to this picture

• use numerical integration to recover explicit function from 
implicit description

– forward Euler — simple/cheap but unstable

– backward Euler — trickier/more expensive but stable

– Euler-Maruyama — “just add noise” to simulate SDEs

• Ito calculus lets us analyze SDEs

– Ito’s lemma — basic analogue of differentiation

– Ito integration — basic analogue of integration

– unlike ordinary calculus, get distributions (not definite values)

analogy: trajectory of rock (+wind)



Thanks!
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