new ComplexSparseMatrix()
This class represents a m by n complex matrix where only nonzero entries
are stored explicitly. Do not create a ComplexSparseMatrix from its constructor,
instead use static factory methods such as fromTriplet, identity and diag.
Example
let T = new ComplexTriplet(100, 100); T.addEntry(new Complex(3.4, 6.4), 11, 43); T.addEntry(new Complex(6.4, 3.4), 99, 99); let A = ComplexSparseMatrix.fromTriplet(T); let B = ComplexSparseMatrix.identity(10, 10); let d = ComplexDenseMatrix.ones(100, 1); let C = ComplexSparseMatrix.diag(d);
Methods
-
<static> fromTriplet(T)
-
Initializes a complex sparse matrix from a ComplexTriplet object.
Parameters:
Name Type Description T
module:LinearAlgebra.ComplexTriplet A complex triplet object containing only the nonzero
entries that need to be stored in this complex sparse matrix.Returns:
-
<static> identity(m, n)
-
Initializes a m by n complex sparse identity matrix.
Parameters:
Name Type Description m
number The number of rows in this complex sparse matrix.
n
number The number of columns in this complex sparse matrix.
Returns:
-
<static> diag(d)
-
Initializes a complex sparse diagonal matrix.
Parameters:
Name Type Description d
module:LinearAlgebra.ComplexDenseMatrix The complex dense vector (d.nCols() == 1) used
to initialize this complex sparse diagonal matrix.Returns:
-
transpose()
-
Returns the transpose of this complex sparse matrix.
Returns:
-
invertDiagonal()
-
Returns the inverse of this diagonal complex sparse matrix.
Returns:
-
conjugate()
-
Returns the conjugate of this complex sparse matrix.
Returns:
-
nRows()
-
Returns the number of rows in this complex sparse matrix.
Returns:
- Type
- number
-
nCols()
-
Returns the number of columns in this complex sparse matrix.
Returns:
- Type
- number
-
nnz()
-
Returns the number of nonzero entries in this complex sparse matrix.
Returns:
- Type
- number
-
frobeniusNorm()
-
Computes the frobenius norm of this complex sparse matrix.
Returns:
- Type
- number
-
subMatrix(r0, r1, c0, c1)
-
Extracts a complex sparse sub-matrix in the range [r0, r1) x [c0, c1), i.e.,
a matrix of size (r1 - r0) x (c1 - c0) starting at indices (r0, c0).Parameters:
Name Type Description r0
number The start row index.
r1
number The end row index (not included).
c0
number The start column index.
c1
number The end column index (not included).
Returns:
-
chol()
-
Returns a sparse ComplexCholesky factorization of this complex sparse matrix.
Returns:
-
lu()
-
Returns a sparse ComplexLU factorization of this complex sparse matrix.
Returns:
-
qr()
-
Returns a sparse ComplexQR factorization of this complex sparse matrix.
Returns:
-
toDense()
-
Returns a dense copy of this complex sparse matrix.
Returns:
-
incrementBy(B)
-
A += B
Parameters:
Name Type Description B
module:LinearAlgebra.ComplexSparseMatrix The complex sparse matrix added to this complex
sparse matrix. -
decrementBy(B)
-
A -= B
Parameters:
Name Type Description B
module:LinearAlgebra.ComplexSparseMatrix The complex sparse matrix subtracted from
this complex sparse matrix. -
scaleBy(s)
-
A *= s
Parameters:
Name Type Description s
module:LinearAlgebra.Complex The complex number this complex sparse matrix is scaled by.
-
plus(B)
-
Returns A + B
Parameters:
Name Type Description B
module:LinearAlgebra.ComplexSparseMatrix The complex sparse matrix added to this complex
sparse matrix.Returns:
-
minus(B)
-
Returns A - B
Parameters:
Name Type Description B
module:LinearAlgebra.ComplexSparseMatrix The complex sparse matrix subtracted from this
complex sparse matrix.Returns:
-
timesComplex(s)
-
Returns A * s
Parameters:
Name Type Description s
module:LinearAlgebra.Complex The complex number this complex sparse matrix is multiplied by.
Returns:
-
timesDense(X)
-
Returns A * X
Parameters:
Name Type Description X
module:LinearAlgebra.ComplexDenseMatrix The complex dense matrix this complex sparse matrix
is multiplied by.Returns:
-
timesSparse(B)
-
Returns A * B
Parameters:
Name Type Description B
module:LinearAlgebra.ComplexSparseMatrix The complex sparse matrix this complex sparse matrix
is multiplied by.Returns: